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Abstract

For a 2-D furnace system filled with a gray medium, surrounded by gray emitting/absorpting and diffusely reflecting

wall surfaces, the temperature distribution is reconstructed using an improved Tikhonov regularization method with

radiative energy images detected from the boundary of the furnace, uniform absorptivity of both the wall surfaces and

the medium being updated from the temperature images grasped from the boundary too. These steps are taken al-

ternately till a convergence is reached. The measurement errors with normal distribution of standard square deviation

of 0.01 are taken into consideration for the radiative energy image and temperature image data. The reconstruction

errors for radiative properties vary from 1.45% to 10.75%, and for the highest temperature are within 2%. Compar-

atively, the reconstruction result for the sharper temperature distribution is not as good as that for the smoother

temperature distribution. The applicability of the proposed method may be practically valuable.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Radiation is the predominant mode of heat transfer

in large-scale, particle-laden combustion systems, such

as pulverized-coal fired furnaces [1]. Efficient monitoring

methods for industrial combustion processes can come

from the solutions of inverse radiative transfer problems

in the furnaces. The temperature distributions in 2-D

systems were estimated from the measurement of the

outgoing radiation intensities when the optical proper-

ties of the medium were known [2]. The optical thick-

ness, the single scattering albedo and the phase function

were estimated simultaneously by inverse analysis, from

the knowledge of radiation intensity taken at the

boundary surfaces of a plane-parallel medium [3].

Mostly, the radiative intensities measured from the

boundary of a system were used as the only input data

for the solution of the inverse radiative problems [1–4].

However, temperature profile/image data measured

from the system boundary can be used as a kind of

additional input data, and the temperature distribution

and scattering albedo profile in a 1-D system were re-

constructed simultaneously from the radiative energy

and temperature profiles measured from the boundaries

[5]. 2-D temperature distribution in a rectangular en-

closure has been reconstructed from radiative energy

images detected from the corners of the system [6]. But

the simultaneous reconstruction of the temperature

distribution and the radiative properties has not been

studied more often.

A non-iterative method for the reconstruction of

temperature distribution will be helpful to reconstruct

simultaneously the temperature distribution and radia-

tive properties. Tikhonov [7] first proposed a regular-

ization method in 1963, and recent researches in this

field seem very active [8–10]. Reginska [9] put forward a

method to determine the regularization parameter, and

Holloway et al. [10] modified this method through giving
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a finite difference regularizer and successfully obtained

the reconstruction of 1-D spatially resolved plasma

optical emission.

In this paper, temperature image data together with

radiative energy image data will be used to reconstruct

2-D temperature distribution, absorptivity of wall sur-

face and absorption coefficient of medium in a 2-D

furnace system filled with gray emitting/absorption me-

dium and surrounded by gray emitting/absorption and

diffusely reflecting wall surface. The temperature distri-

butions will be reconstructed from the radiative energy

images using an improved Tikhonov regularization

method. The two radiative properties are then updated

from the temperature images. These two steps are taken

alternately till a convergence is reached.

2. Method proposed

2.1. Basic consideration

Consider a 2-D rectangular furnace filled with a gray

emitting/absorption medium and surrounded by gray

emitting/absorption and diffusely reflecting surfaces

[6,11]. The absorption coefficient of the medium, ka
(m�1), is assumed be uniform, and the absorptivity of

the surfaces, e (/), is also uniform. The temperature
distribution of the system is Ti, i ¼ 1; . . . ;mþ n, where m
is the elements divided for the surface, and n is the zones
divided for the medium. CCD cameras are mounted in

the corners of the system with larger viewing angles than

the cross angles of the corners. The total radiative en-

ergy received by the jth image pixel in one CCD camera
can be expressed as we reported in [6]

EðjÞ ¼
Xm
i¼1
Rdði ! jÞerT 4i DSi

þ
Xmþn

i¼mþ1
Rdði ! jÞ4karT 4i DVi ; ð1Þ

which is transferred into a matrix equation as

E ¼ AT; ð2Þ

where

Aði; jÞ ¼ Rdði ! jÞerDSi; when i6m;
Rdði ! jÞ4karDVi ; when i > m;

�

T ðiÞ ¼ T 4i :

In these equations, 4karT 4i DVi refers to the total energy
emitted by the ith medium element with absorption co-

efficient ka, temperature Ti and volume DVi , r is the

Boltzmann constant, and erT 4i DSi refers to the total en-
ergy emitted by the ith surface element with emissivity e,
temperature Ti and area DSi. Rdði ! jÞ, also called
READ values [6,11], refer to the ratio of energy received

by the jth image pixel element to the total energy emitted
by the ith system element. The calculation method for

Rdði ! jÞ and the radiative energy images E has been
described for 2-D cases [12], and will not be given here.

Besides the radiative energy images used as input

data, the temperature images are also measured as input

data in this paper. A monochromatic radiative temper-

ature image monitoring method was given in [13]. In this

Nomenclature

A, A constants and their matrix defined in Eq. (2)

C1, C2 Planck�s constants
D regularization operator

E, E radiative energy (W) and its vector (W)

m number of surface elements

n number of medium elements

Rd READ value referring to the ratio of radi-

ative energy received by image pixels

RT reconstruction error for temperature ex-

pressed in Eq. (16)

S area of surface elements (m2)

T , T temperature in the system (K) and vector of

its fourth power (K4)

TC, TC temperature (K) and its matrix (K4) mea-

sured by Eq. (3)

TM, TM temperature (K) and its matrix (K4) mea-

sured by Eq. (4)

V volume of medium elements (m3)

a regularization parameter

d refers to small increment

ka absorption coefficient of medium (1/m)

k1, k2 two representative wavelengths used in Eq.

(3) (nm)

r Boltzmann constant standard square devia-

tion

e absorptivity of surface (/)

1 random variable

D refers to updating value

Superscripts

r iteration number

T transposed matrix

Subscripts

meas measured

min minimum

recons reconstructed
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method, a reference temperature in a certain direction j0
within the viewing field of the image-formation process

is measured through using the two-color method. The

measuring direction of the reference temperature is

suggested close the highest temperature zone inside the

system. Selecting two representative wavelengths, k1, k2,
substituting the total radiative energy, rT 4i , in Eq. (1)
with the monochromatic energy ðC1=k5Þ expð�C2=kTiÞ,
repeating the forward calculation (due to the gray

characteristics of the medium, the whole and mono-

chromatic radiative properties are the same, then the

values of Rd do not need to be calculated again), two

monochromatic radiative images Ek1ðjÞ, Ek2ðjÞ can be
obtained. Through using the two-color method (see,

for example, [14]), a kind of temperature TCðjÞ can be
calculated from Ek1ðjÞ=Ek2ðjÞ, that is,

TCðjÞ ¼ �C2
1

k1

�
� 1

k2

�
ln

Ek1ðjÞ
Ek2ðjÞ

k51
k52

" #,
: ð3Þ

But an other kind of temperature image TMðjÞ is chosen
as the boundary temperature image in this study. In

order to calculate TMðjÞ, one temperature in pixel j0
from TC, that is TCðj0Þ, is taken as a reference temper-
ature. Then, TMðjÞ can be deduced from one mono-

chromatic radiative image Ek1ðjÞ (or Ek2ðjÞ) with the aid
of the reference temperature as [13]

TMðjÞ ¼ 1
1

TCðj0Þ

��
� k1
C2
ln

Ek1ðjÞ
Ek1ðj0Þ

� ��
: ð4Þ

Obviously, radiative temperature image TM is a function

of the temperature distribution T, radiative properties ka
and e, that is, TM ¼ f ðka; e;TÞ. As discussed from the

reconstruction results below, obvious difference may

exist between the two kinds of temperature images, TC
and TM, we select TM for the simultaneous reconstruc-

tion. Thus, for a given gray emitting/absorption, 2-D

rectangular furnace system, its temperature distribution

T (including surface temperature and medium temper-

ature), the absorptivity e of the diffusely reflecting sur-
face and the absorption coefficient ka, the radiative
energy images E in its several corners and the radiative

temperature images TM in the same corners can be ob-

tained from Eqs. (1)–(4).

The inverse problem is then described as below.

Given the radiative energy images E and the radiative

temperature images TM as input data, added by random

errors with zero average value and normal distribution

of standard square deviation r, that is

Emeas ¼ Eð1þ r1Þ;
TM;meas ¼ TMð1þ r1Þ;

�
ð5Þ

where the range of random variables 1 is chosen as
�2:576 < 1 < 2:576, which represents the 99% confi-

dence bound for the measured data. Then, the temper-

ature distribution T of the system and the radiative

properties e and ka are to be reconstructed from Emeas
and TM;meas.

2.2. Reconstruction of 2-D temperature distribution by

regularization method

To reconstruct the temperature distribution, Trecons,

determined by

Emeas ¼ ATrecons ð6Þ

a modified Tikhonov regularization method was pro-

posed in [10], of which the basic principle is to find a T

that minimizes

RðT; aÞ ¼ kEmeas � ATk2 þ akDTk2; ð7Þ

where D is a regularization operator such that DT is

expected to be effective for a reconstructed parameter

which is continuously distributed in space. The regu-

larization parameter a also plays an important role in
reconstruction, as suggested in [10]:

aðEmeasÞ � 2kEmeas � ATð0Þk2=kDTð0Þk2; ð8Þ

where Tð0Þ is the least-square solution of Eq. (6), and
the solution of Eq. (6) under the minimization of Eq. (7)

is derived in [10] as

T0
recons ¼ ðATAþ aDTDÞ�1ATEmeas: ð9Þ

However, for the reconstruction of 2-D temperature

distribution in furnaces, the modified Tikhonov regu-

larization method needs to be improved in selecting the

regularization operator D. As shown in Fig. 1, there are

three kinds of elements which have different relation-

ships with other adjacent elements: (a) the elements in

the crank points; (b) the elements along the edges except

those in (a); and (c) all the rest elements inside the faces

elements. For these three kinds of elements, the corre-

sponding elements in the matrix DT are selected as

Elements in DT corresponding to T0

¼
T0 � ð1=2ÞðT1þ T2Þ for T0 belong to ðaÞ;
T0 � ð1=3ÞðT1þ T2 þ T3Þ for T0 belong to ðbÞ;
T0 � ð1=4ÞðT1þ T2 þ T3 þ T4Þ for T0 belong to ðcÞ:

8><
>:

ð10Þ

Fig. 1. Three spatial relationships for elements in a 2-D rect-

angular space.
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The regularization operator D has two features: all the

diagonal elements are 1.0, and the sum of the elements in

every row is 0.

Actually, the fourth power of the temperature in a

furnaces should be higher than a positive limitation, Tmin
(for instance, it is selected as 2004 in this paper). A post

treatment is adopted in this paper. After T0
recons is ob-

tained through using the regularization method, a new

solution, Trecons, is defined as

Trecons;i ¼
T 0
recons;i if T 0

recons;i > Tmin;
Tmin if T 0

recons;i 6 Tmin:

(
ð11Þ

Obviously, Trecons is a quasi-optimal solution of Eq. (7).

This revised Tikhonov regularization method has been

successfully used in reconstruction of three-dimensional

temperature distributions in a large-scale furnace [15].

2.3. Updating the radiative properties

The temperature distribution is TðrÞ after rth itera-
tion, and the radiative properties are kðrÞa and eðrÞ, re-
spectively. We need to calculate the updating values

DkðrÞa and DeðrÞ from the radiative temperature images

TM;meas. With the first approximation

TM;meas � T
ðrÞ
M þ oT

ðrÞ
M

oka

oT
ðrÞ
M

oe

 !
DkðrÞa
DeðrÞ

� �
; ð12Þ

under the least-square meaning, we have

DkðrÞa
DeðrÞ

 !
¼ oT

ðrÞ
M

oka

oT
ðrÞ
M

oe

 !T
oT

ðrÞ
M

oka

oT
ðrÞ
M

oe

 !0
@

1
A

�1


 oT
ðrÞ
M

oka

oT
ðrÞ
M

oe

 !T
ðTM;meas � T

ðrÞ
M Þ; ð13Þ

where T
ðrÞ
M ¼ f ðkðrÞa ; eðrÞ;TðrÞÞ. In order to calculate

oT
ðrÞ
M =oka, oT

ðrÞ
M =oe, small increments dkðrÞa and deðrÞ are

given for kðrÞa and eðrÞ, respectively. After obtaining
T

ðrÞ
MðkaÞ ¼ f ðkðrÞa þ dkðrÞa ; eðrÞ;TðrÞÞ, and TðrÞ

MðeÞ ¼ f ðkðrÞa ; eðrÞ þ
deðrÞ;TðrÞÞ, we have
oT

ðrÞ
M

oka
� ðTðrÞ

MðkaÞ � T
ðrÞ
M Þ=dkðrÞa ;

oT
ðrÞ
M

oe
� ðTðrÞ

MðeÞ � T
ðrÞ
M Þ=deðrÞ:

ð14Þ

Then,

kðrþ1Þa ¼ kðrÞa þ DkðrÞa ; eðrþ1Þ ¼ eðrÞ þ DeðrÞ: ð15Þ

2.4. Iterative steps and error assessment of reconstruction

The iterative calculation begins ðr ¼ 0; 1; 2; . . .Þ from
initial values kð0Þa and eð0Þ. (i) The temperature distribu-
tion TðrÞ can be calculated from Eqs. (6)–(11). (ii) The

updated radiative properties kðrþ1Þa and eðrþ1Þ can be ob-
tained from Eqs. (12)–(15). (iii) Return to (i) if the it-

erative number is not enough.

It can be seen that after the radiative properties ap-

proach the original ones, they begin to oscillate, but the

oscillating magnitudes are not big. So, the iterative

number can be determined after several trial calcula-

tions. Due to the oscillating of the radiative properties,

their reconstruction results are the average values of the

last five times. The reconstruction result for the tem-

perature distribution is calculated from the averaged

radiative properties. A reconstruction error for the

temperature distribution is obtained as follows:

RT ¼ 1

n

Xn
i¼1

ðTrecons;i

 
� TiÞ2

!1=2,
maxðTiÞ: ð16Þ

Because we will study a sharp temperature distribution,

the reconstruction error can also be assessed from the

standard square deviations of the high temperatures and

their relative errors. The reconstruction errors for the

two radiative properties are also assessed from their

standard square deviations and their relative errors.

3. Reconstruction results and discussion

The furnace system studied here [6,11] with dimen-

sion of 10 m
 10 m is shown in Fig. 2. The spatial re-

1 2 3 4 5 6 7 8 9 10  

40 41 42 43 44 45 46 47 48 49 50 11 

39 51 52 53 54 55 56 57 58 59 60 12 

38 61 62 63 64 65 66 67 68 69 70 13 

37 71 72 73 74 75 76 77 78 79 80 14 

36 81 82 83 84 85 86 87 88 89 90 15 

35 91 92 93 94 95 96 97 98 99 100 16 

34 101 102 103 104 105 106 107 108 109 110 17 

33 111 112 113 114 115 116 117 118 119 120 18 

32 121 122 123 124 125 126 127 128 129 130 19 

31 131 132 133 134 135 136 137 138 139 140 20 

30 29 28 27 26 25 24 23 22 21  

Camera A  Camera B  

Camera D Camera C  

Fig. 2. The system studied with dimension of 10 m
 10 m.
Sizing grid is 1 m
 1 m. Grid 1–40 refers to wall surface ele-
ments; others refer to gas elements [6].
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gion is divided into 10
 10 ¼ 100 elements, and is sur-
rounded by gray walls with an emissivity of 0.8. The

absorption coefficient of the medium is assumed to be

0.1 m�1. The wall is divided into 10
 4 ¼ 40 elements.
Two cases are studied:

Case I. Wall surface temperature is 300 K, and a sharp

temperature distribution in the medium is

shown in Fig. 3(a);

Case II.The surface temperature is 800 K, and the tem-

perature distribution shown in Fig. 3(b) is more

smoother than that in Case I.

Four CCD cameras are mounted in the four corners

with diameter of the lens assumed to be 0.47 m, which is

larger than that for a real CCD camera. This choice is

only for convenience of reducing calculation time [6,12].

The total angular field of view of the camera is assumed

to be 100�, which is divided into 140 parts for the 140
image pixels of the CCD target. A two-color pyrometer

is installed along the direction of the 70th image-for-

mation element, which is close to the center line of the

viewing field of the each camera.

The 1-D profiles/images of radiative energy E, tem-

peratures TC and TM detected from the four corners in

Case I are shown in Fig. 4(a)–(c), respectively. The peaks

in the radiative energy profiles shown in Fig. 4(a) cor-

respond to the three peaks of temperature in the system.

All the four profiles of temperature TC in Fig. 4(b) are

almost straight lines within 1488� 2 K which nearly

equal to the three high temperatures in the system, and

the radiative energy emitted by these three high tem-

perature elements would be much higher also. Due to

the reflection of the wall surfaces, the monochromatic

radiative energy emitted from these three high temper-

ature elements dominates the energy received by all the

image pixels. So, the temperatures calculated by Eq. (3)

approach the high temperatures thereby.

The reference temperatures used for calculation of

TM are derived through the two-color method in Eq. (3),

and then, they are all close to 1488 K as explained

above. For the monochromatic radiative energy detected

from corners A and C similar to that shown in Fig. 4(a),

the peaks of radiative energy are higher than those at

which the reference temperatures are measured. The

temperature level of 2600 K in Fig. 4(c) deduced from

564.53 592.85 634.81 666. 00 700.27 720.89 680.56 636. 13 600.50 567. 61

581.60 619.03 676.57 727. 53 757.19 1489 .51 735.71 667. 78 623.79 589.37

589.05 630.52 709.98 1488.55 769.34 769.21 754.32 691. 86 636.83 601.64

585.24 625.30 676.46 721. 60 723.83 746.56 1487.92 709. 45 637.17 596.68

578.06 605.76 637.18 657. 01 676.41 701.62 723.06 671. 14 623.25 584. 63

564.41 580.81 604.40 622. 19 635.55 642.30 646.30 626. 66 602.60 571. 52

546.95 558.91 581.36 597. 31 597.32 599.94 607.10 592. 84 575.93 552. 43

526.66 543.60 559.23 567. 55 573.36 577.39 570.16 562. 05 554.80 532. 69

508.10 523.56 534.12 542. 87 552.51 550.08 548.57 545. 85 530.12 513. 22

493.80 499.17 520.10 519. 65 526.85 530.69 529.72 520. 92 504.54 490. 77

800.00 800.00 800.00 800. 00 800.00 800.00 800.00 800. 00 800.00 800. 00

800. 00

800. 00

800. 00

800. 00

800. 00

800. 00

800. 00

800.00 917.19 1021.99 1064.86 1048.42 992.66 921.95 857.70 814.68

800.00 1088.81 1347.09 145 2.75 1412.23 1274.82 1100.55 942 .19 836.19

800.00 1210.30 1577.25 172 7.36 1669.79 1474.57 1226. 99 1002.01 851.41

800.00 1238.59 1630.82 1791.29 1729.75 1521.07 1256. 43 1015.94 854.96

800.00 1176.41 1513.03 1650.75 1597.93 141 8.84 1191.72 985.32 847.17

800.00 105 7.65 1288.07 138 2.34 1346.19 1223.60 1068. 13 926 .85 832 .29

800.00 929.24 1044.83 1092. 11 1073 .98 1012.49 934.50 863.63 816.19

800.00 834.26 864.89 877.42 872.62 856.32 835.65 816. 87 804.29 800. 00

800.00 800.00 800.00 8 00.00 800.00 800.00 800.00 800. 00 800.00 800. 00

(a)

(b)

Fig. 3. Two cases of temperature distributions, one in Case I (a) is sharper than the other in Case II (b).
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Eq. (4) would be unreasonable. Contrarily, profiles of

TM obtained from corners B and D are more reasonable,

since their reference temperatures are measured from the

directions of peaks of radiative energy profiles. So, even

if the radiative characteristics of the medium inside the

system is gray, since the source of the radiative energy

received from the boundary of the system is compli-

cated, the radiative energy received from the system

boundary is far from the spectroscopic features of a gray

body, and the temperatures calculated from Wein�s law
maybe unacceptable.

Fig. 5 gives the iterative processes with standard

deviation rs taking as 0.01, for the radiative properties
when their initial values kð0Þa and eð0Þ are guessed as
ð0:2; 0:5Þ, ð0:01; 0:5Þ, ð0:01; 0:95Þ, and ð0:2; 0:95Þ in Case
I. It is obvious that even if the iterative processes are not

the same for the different initial values and different

random variables in Eq. (5), they all can converge to the

vicinity of the original values with oscillations. One

reason for the oscillations is that the calculation for the

READ values of the image pixels with the Monte Carlo

method has its own statistical errors [12]. But also, it

maybe due to the individual updating of the temperature
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Fig. 4. The radiative energy profiles E (a) and the temperature

profiles TC (b) and TM (c) in Case I.
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Fig. 5. The iterative processes (different calculation times with

different random variables) (a) for ka and (b) for e with different
initial values when rs ¼ 0:01 in Case I.
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distribution and the radiative properties. Fig. 6 displays

one example of the results for the reconstruction of the

temperature distributions. Statistical results for the val-

ues of radiative properties ka and e, and the three high
temperatures T56, T64, T77 from 14 times of reconstruc-

tion with different random variables in Eq. (5) are

summarized in Table 1. Because of the influence of the

measurement errors, the reconstruction for the low

temperature zone is not as good as that for the high

temperature zone. The reconstruction errors RT is 9.03%
with a standard square deviation of 1.28%, which shows

a good repeatability. In particular, the two radiative

properties and the positions and the values of the three

high temperature elements have been recovered very

well, that is just interested for practical engineering.

Fig. 7 displays the iterative processes for Case II in

12 times of calculations with radiative properties ka and
e when rs ¼ 0:01 and different random variables of

255.27 200.00 200.00 200.00 354.49 387.91 200.00 200 .00 201. 79 246 .71

240.09 586.45 712.01 599.88 200.00 781.26 733.81 663.36 642.70 627.14 603.14 248.06

295.87 536.55 658.31 743.80 306.20 842.16 150 1.32 738.26 641.46 673.57 620.19 202.20

200.00 720.91 701.73 778.35 1441. 98 912. 50 853.31 696 .06 780.69 657.84 625.16 200.00

389.62 711.06 710.96 862.76 200.00 932.51 823.44 1451 .51 419 .36 367 .52 333 .93 292 .45

200.00 200.00 200.00 679.58 200.00 845.48 845.27 731.07 776.01 710.49 648.97 200.00

200.00 369.63 502.31 742.66 200.00 881.46 789.90 581.58 768.33 737.08 667.54 318.03

294.06 689.68 656.58 713.41 200.00 780.65 672.93 200.00 200.00 200.00 334.03 378.11

200.00 411.82 608.56 543.13 200.00 604.46 752.64 506.98 585.04 549.94 504.32 277.69

200.00 604.30 370.17 595.82 200.00 634.73 598.56 532.85 530.71 555.94 537.46 310.30

283.55 486.34 621.21 242.52 230.80 558.42 580.78 497.46 524.96 545.85 500.84 286.85

267.33 200.00 301.40 322.78 321.01 296.18 330.23 200 .00 228. 11 275. 82

Fig. 6. One example of reconstructed temperature distributions in Case I. Inside the inner loop is for the medium and the outside is for

the surface.

Table 1

Statistical results of the iteration calculations with r ¼ 0:01 in 14 times for Case I
T56 (K) T64 (K) T77 (K) ka (1/m) e (/) RT

Original values 1489.51 1488.55 1487.93 0.10 0.80 /

Averaged values reconstructed 1496.89 1462.08 1461.43 0.09366 0.7878 9.03%

Standard square deviations of reconstructed values 8.637 28.05 27.91 0.006871 0.01390 1.28%

Relative errors of the reconstructed values 0.50% 1.78% 1.78% 6.34% 1.53% /
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Fig. 7. The iterative processes in 12 times with rs ¼ 0:01 and different initial values of (a) ka and (b) e for Case II.
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ka and e. Compared with those in Case I, the oscillating
magnitudes of the radiative properties in Case II de-

crease obviously since the temperature distribution

becomes smoother. It is seen, from summary of the re-

construction results listed in Table 2, the relative errors

of the average values of the radiative properties are

10.75% and 1.45% for ka and e, respectively. They are
similar to the levels obtained in Case I. However, the

reconstruction results for the temperature distribution

are more interesting, the reconstruction error RT is

2.42%, which is much lower than that in Case I, where

the relative error for the highest temperature, T84, is
1.36% only. Fortunately, due to the strong mixing and

heat transfer in industrial furnaces, the temperature

distributions in them are smooth in general, which en-

sures the applicability of the simultaneous reconstruc-

tion method established in this paper.

4. Conclusions

A new method is proposed for the simultaneous es-

timation of absorption coefficient of the medium and

absorptivity of the wall surface and temperature distri-

butions in a two-dimensional furnace system. In this

method, a revised Tikhonov regularization [10] is used

to reconstruct temperature distribution from the radia-

tive energy images, and the radiative properties are up-

dated from the radiative temperature images, the

radiative temperature images can serve as an additional

measurement data besides the radiative energy images

used in literatures [1–4].

For two cases, one with a sharper temperature dis-

tribution and the other with a smoother temperature

distribution, respectively, taking account with normal

distribution of standard square deviation of r ¼ 0:01
was added into the measurement data, the radiative

properties can be reconstructed with errors from 1.45%

to 10.75%. The positions and the values of the highest

temperatures in the two cases were reconstructed well,

which is more attractive in practice.
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